
Chapter 4 - Overview of C++ Language

Introduction to C++ language
 C++ is a statically typed, compiled, general-purpose, case-sensitive, free-form programming

language that supports procedural, object-oriented, and generic programming.
 C++ is regarded as a middle-level language, as it comprises a combination of both high-level and

low-level language features.
 C++ was developed by Bjarne Stroustrup starting in 1979 at Bell Labs in Murray Hill, New Jersey,

as an enhancement to the C language and originally named C with Classes but later it was
renamed C++ in 1983.

 C++ is a superset of C, and that virtually any legal C program is a legal C++ program.

Structure of a C++ program
 Let us look at a simple code that would print the words Hello World.
#include <iostream.h>

// main() is where program execution begins.

void main()
{

cout << "Hello World";
}

 Let us look various parts of the above program:
 The C++ language defines several headers, which contain information that is either necessary or

useful to your program. For this program, the header <iostream.h> is needed.
 The next line // main() is where program execution begins. is a single-line comment available in

C++. Single-line comments begin with // and stop at the end of the line.
 The line int main() is the main function where program execution begins.
 The next line cout << "This is my first C++ program."; causes the message "This is my first C++

program" to be displayed on the screen.

Concepts of compiling and linking

Let's look at how to save the file, compile and run the program. Please follow the steps given below:
 Open a text editor and add the code as above.
 Save the file as: hello.cpp
 Open a command prompt and go to the directory where you saved the file.
 Type 'g++ hello.cpp ' and press enter to compile your code. If there are no errors in your code the

command prompt will take you to the next line and would generate a.out executable file.
 Now, type ' a.out' to run your program.
 You will be able to see ' Hello World ' printed on the window.
$ g++ hello.cpp
$./a.out
Hello World

Make sure that g++ is in your path and that you are running it in the directory containing file hello.cpp.

IDE and its features

Borland's Turbo C, first introduced in 1987, applied the same integrated development model used by the
Silicon Valley software company to the C programming language. Enhanced with an assembler and
debugger in 1989, Version 2.01 was the last release. In 1990 Borland introduced Turbo C++, ending the
run of this memorable language.

Here are some of its best features:

 Integrated Development Environment: In the early days of PC development, a programmer would
run one program to edit code, another to compile the program then the new program was run to
test for errors. This process was repeated many, many times. The integrated development
environment (IDE) that Borland first introduced with Turbo Pascal greatly simplified this by
wrapping the entire development process into one program.

 Optimized C Compiler: Turbo C offered a number of optimization choices that enhanced size and
speed at a time when memory and processor cycles were still limited resources.

 Integrated Assembler Language: Turbo C allows assembly code to be placed anywhere inside a C
program.

 Hardware Level Debugging: The Turbo Debugger lets developers view computer memory and
registers in real time as the program steps through the code. Breakpoints and watches can be set
so the program runs and stops at predefined points or when memory locations or registers reach
certain values.

 Multiple Memory Models: The early C languages solved this with a number of different memory
models: tiny, small, compact and large.

 Native Program Development: Although most development is now targeted toward Windows,
there are applications where the code needs to get down close to the bare metal. Device drivers,
hard disk utilities, interfaces to specialized hardware and diagnostic programs all need low-level
access.

Basic terminology –
Character set, Tokens, Identifiers, Keywords, Literal, Symbolic constants

Programming language is a set of rules, symbols, and special words used to construct programs. There are
certain elements that are common to all programming languages. Now, we will discuss these elements in
brief :

C++ Character Set

Character set is a set of valid characters that a language can recognize.

Letters A-Z, a-z
Digits 0-9
Special Characters Space + - * / ^ \ () [] {} = != <> ‘ “ $, ; : % ! & ?

_ # <= >= @
Formatting
characters

backspace, horizontal tab, vertical tab, form feed, and
carriage return

Tokens
A token is a group of characters that logically belong together. The programmer can write a program by
using tokens. C++ uses the following types of tokens: Keywords, Identifiers, Literals, Punctuators,
Operators.

1. Keywords

These are some reserved words in C++ which have predefined meaning to compiler called
keywords. The following list shows the reserved words in C++. These reserved words may
not be used as constant or variable or any other identifier names.

asm else new this
auto enum operator throw
bool explicit private true

break export protected try
case extern public typedef
catch false register typeid
char float reinterpret_cast typename
class for return union
const friend short unsigned

const_cast goto signed using
continue if sizeof virtual
default inline static void
delete int static_cast volatile

do long struct wchar_t
double mutable switch while

dynamic_cast namespace template

2. Identifiers
Symbolic names can be used in C++ for various data items used by a programmer in his program. A
symbolic name is generally known as an identifier. The identifier is a sequence of characters taken from
C++ character set. The rule for the formation of an identifier are:

 An identifier can consist of alphabets, digits and/or underscores.
 It must not start with a digit
 C++ is case sensitive that is upper case and lower case letters are considered different from each

other.
 It should not be a reserved word.

A C++ identifier is a name used to identify a variable, function, class, module, or any other user-defined
item. An identifier starts with a letter A to Z or a to z or an underscore (_) followed by zero or more
letters, underscores, and digits (0 to 9).

C++ does not allow punctuation characters such as @, $, and % within identifiers. C++ is a case-sensitive
programming language. Thus, Manpower and manpower are two different identifiers in C++.

Here are some examples of acceptable identifiers −
mohd zara abc move_name a_123
myname50 _temp j a23b9 retVal

3. Literals
Literals (often referred to as constants) are data items that never change their value during the execution
of the program. The following types of literals are available in C++.
 Integer-Constants
 Character-constants
 Floating-constants
 Strings-constants
 Integer Constants

Integer constants are whole number without any fractional part. C++ allows three types of integer
constants.
 Decimal integer constants : It consists of sequence of digits and should not begin with 0 (zero).

For example 124, - 179, +108.
 Octal integer constants: It consists of sequence of digits starting with 0 (zero). For example.

014, 012.
 Hexadecimal integer constant: It consists of sequence of digits preceded by ox or OX.

 Character constants
A character constant in C++ must contain one or more characters and must be enclosed in single
quotation marks. For example 'A', '9', etc. C++ allows nongraphic characters which cannot be
typed directly from keyboard, e.g., backspace, tab, carriage return etc. These characters can be
represented by using an escape sequence. An escape sequence represents a single character.

 Floating constants
They are also called real constants. They are numbers having fractional parts. They may be written
in fractional form or exponent form. A real constant in fractional form consists of signed or
unsigned digits including a decimal point between digits. For example 3.0, -17.0, -0.627 etc.

 String Literals
A sequence of character enclosed within double quotes is called a string literal. String literal is by
default (automatically) added with a special character ‘\0' which denotes the end of the string.
Therefore the size of the string is increased by one character. For example "COMPUTER" will re
represented as "COMPUTER\0" in the memory and its size is 9 characters.

Fundamental data types

C++ offer the programmer a rich assortment of built-in as well as user defined data types. Following table
lists down seven basic C++ data types:

Type Keyword

Boolean bool

Character char

Integer int

Floating point float

Double floating point double

Valueless void

The following table shows the variable type, how much memory it takes to store the value in memory,
and what is maximum and minimum value which can be stored in such type of variables.

Type Typical Bit
Width

Typical Range

char 1byte -128 to 127 or 0 to 255
unsigned char 1byte 0 to 255

signed char 1byte -128 to 127
int 4bytes -2147483648 to 2147483647

unsigned int 4bytes 0 to 4294967295
signed int 4bytes -2147483648 to 2147483647
short int 2bytes -32768 to 32767

unsigned short int 2bytes 0 to 65,535
signed short int 2bytes -32768 to 32767

long int 8bytes -2,147,483,648 to 2,147,483,647
signed long int 8bytes -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807
unsigned long int 8bytes 0 to 18,446,744,073,709,551,615

float 4bytes +/- 3.4e +/- 38 (~7 digits)
double 8bytes +/- 1.7e +/- 308 (~15 digits)

long double 8bytes +/- 1.7e +/- 308 (~15 digits)

Declaring variables, Initializing variables

A variable declaration provides assurance to the compiler that there is one variable existing with the
given type and name so that compiler proceed for further compilation without needing complete detail
about the variable. A variable declaration has its meaning at the time of compilation only, compiler needs
actual variable definition at the time of linking of the program.

A variable declaration is useful when you are using multiple files and you define your variable in one of
the files which will be available at the time of linking of the program. You will use extern keyword to
declare a variable at any place. Though you can declare a variable multiple times in your C++ program, but
it can be defined only once in a file, a function or a block of code.

Example
Try the following example where a variable has been declared at the top, but it has been defined inside
the main function:

#include <iostream.h>

void main () {
// Variable declaration
int a, b, c;
float f;
// actual initialization

a = 10;
b = 20;
c = a + b;
cout << c << endl ;

f = 70.0/3.0;
cout << f << endl ;

}

Type modifiers

C++ allows the char, int, and double data types to have modifiers preceding them. A modifier is used to
alter the meaning of the base type so that it more precisely fits the needs of various situations.

The data type modifiers are listed here:
 signed
 unsigned
 long
 short

The modifiers signed, unsigned, long, and short can be applied to integer base types. In
addition, signed and unsigned can be applied to char, and long can be applied to double.

The modifiers signed and unsigned can also be used as prefix to long or short modifiers. For
example, unsigned long int.

C++ allows a shorthand notation for declaring unsigned, short, or long integers. You can simply use the
word unsigned, short, or long, without the int. The int is implied. For example, the following two
statements both declare unsigned integer variables.

unsigned x;
unsigned int y;

To understand the difference between the way that signed and unsigned integer modifiers are
interpreted by C++, you should run the following short program:

#include <iostream.h>

/* This program shows the difference between
* signed and unsigned integers.

*/
void main() {

short int i; // a signed short integer
short unsigned int j; // an unsigned short integer

j = 50000;

i = j;
cout << i << " " << j;

}

When this program is run, following is the output:
-15536 50000

The above result is because the bit pattern that represents 50,000 as a short unsigned integer is
interpreted as -15,536 by a short.

